第2章 构件建模

Adams/View 中可产生 4 种类型的构件:刚性体(Rigid body)、柔性体(Flexible body)、 点质量(Point mass)和大地形体(Ground part)。

- 刚性体:在任何时候都不发生变形,可以运动,具有空间的6个自由度,有质量和转动惯量等力学性质。
- 柔性体:受到外力时会发生变形,可以运动,有质量和转动惯量等力学性质。
- 点质量:不考虑几何外延,体积为零,仅有质量,没有惯性矩,可以运动,但只有3 个平动自由度。
- 大地形体:没有质量和速度,自由度为零。每个模型中必须存在,且在进入 Adams/View 后系统会自动生成,定义绝对坐标系(GCS)及坐标原点,并且在仿真过程中始终静 止不动,在计算速度和加速度时起着惯性参考坐标系的作用。

2.1 View 中建模

2.1.1 构件与构件元素

在 Adams/View 中,一个或几个构件元素构成一个复杂的构件(Part)。构件元素包括构造 元素,如点、曲线、坐标标记等,及几何实体,如立方体、圆柱、球、圆环等。构件与构件元 素之间的关系如图 2-1 所示,构件 handle 由 Link、Marker 标记点 4 与 9 组成。

图 2-1 构件与构件元素之间的关系

对于一些简单的几何模型,可直接在 Adams/View 中通过建立几何元素、构造元素、布尔运算、特征修改来构建,而对于比较复杂的几何模型或要求逼真的视觉效果模型,则可以在其他 CAD 软件中建立几何模型,直接通过 Exchange 接口或 Translator 接口模块导入到 Adams/View 中。

第2章

2.1.2 创建构造元素

构造元素包括设计点、标记点、圆、圆弧、直线、质量点、多段线和样条曲线。单击主工 具栏 Bodies>Construction,构造元素工具栏如图 2-2 所示。

图 2-2 构造元素工具栏

这些构造元素建模工具的使用方法大同小异,单击不同的按钮,工具界面状态栏会有相应 的提示信息,如图 2-3 所示,可根据状态栏的提示信息进行操作,下面介绍部分要素的使用方法。

图 2-3 状态提示信息

(1) 创建设计点。以设计点为基准定义空间位置来创建构件,是 Adams/View 中的常用 方法。可以通过对设计点的参数化处理,实现模型的参数化建模,在试验设计、研究和优化分 析中非常有用。

单击 Construction 中的 • 按钮,在模型树上方出现设计点的属性栏,如图 2-4 所示。

Add to Ground	•
Don't Attach	•
Point Table	1

MSC Adams 多体动力学仿真基础与实例解析

在设置栏中可以选择以下内容:

- Add to Ground:将设计点放置在大地上。
- Add to Part: 将设计点放置在零件上。
- Don't Attach: 附近的标记点不与设计点关联。
- Attach Near: 附近的标记点与设计点关联。

单击属性栏的 Point Table 按钮,可通过单击 Create 按钮来快速创建 Point 点,默认坐标值为(0,0,0),可以根据实际修改坐标值。还可以参数化坐标值,选中需要参数化的坐标分量,在对话框顶部的编辑框内右击鼠标,在快捷菜单中执行 Parameterize>Create Design Variable,直接创建设计变量,或选中 Reference Design Variable 来选择已经创建好的设计变量,如图 2-5 所示。

✓ IIII IIIII Loc_X IIIII IIIII POINT_1 11.0 IIIII POINT_2 -100.0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Clear Cut Capy Paste	Lcc_2 0.0 0.0 0.0		Apply
POINT_4 0.0	Parameterize →	Create Design Variable Reference Design Variable Expression Builder Unparameterize	Roal Integer String Object	

图 2-5 设计点编辑参数化对话框

(2) 创建 Marker 标记点。标记点既有位置又有方向,可在任意构件或地面上定义局部坐标系参考点。

单击 Construction 中的 六 按钮,在模型树上方出现标记点的属性栏,如图 2-6 所示。

Marker	
Add to Ground	-
Orientation	
Global XY Plane 🔻	

图 2-6 标记点属性栏

在设置栏中可以选择以下内容:

- Add to Ground:将标记点放置在大地上。
- Add to Part: 将标记点放置在零件上。
- Add to Curve: 将标记点放置在曲线上。

Orientation 用于指定 Marker 点的方向,可以选择全局坐标系 Global XY Plane 平面设置

1件建模

第2章

Marker 点的 XY 轴与全局坐标系的 XY 轴相同,或者自定义选择 X-Axis 和 Y-Axis 来指定 Marker 的 XY 轴方向。

2.1.3 创建实体元素

Adams/View 中提供了 10 种常用几何实体(Solids)建模工具,包括立方体(Box)、连杆(Link)、圆柱体(Cylinder)、多边形板(Plate)、球体(Sphere)、拉伸实体(Extrusion)、圆台(Frustum)、旋转体(Revolution)、圆环(Torus)、平面(Plane),如图 2-7 所示。

几何实体建模的一般过程如下:

(1) 在实体建模工具栏中选取需要创建的三维实体建模工具。

(2) 在参数设置栏中,选择创建新几何实体(New Part),还是添加到已有零部件上创建几何实体(Add to Part),或者是在地面上创建几何实体(On Ground)。

(3) 输入几何实体的尺寸参数,如长、宽、高、半径等。

(4)按照工作界面下方状态栏的提示信息,点选起始设计点,拖动鼠标至希望绘制的形体尺寸,如果在参数设置栏中定义了具体的尺寸参数,则不随鼠标拖动变化。

(5) 单击完成实体建模。

1. 创建长方体

单击 Solids 工具栏中的 🎔 按钮,在模型树上方出现长方体属性栏,如图 2-8 所示。

New Deet	
New Part	
Length	(20.0cm)
Height	(20.0cm)
Depth	(20.0cm)

图 2-8 Box 属性对话框

在下拉列表框中有 New Part、Add to Part、On Ground 选项,分别表示所创建的长方体是 新创建、添加到已有的构件上或者属于地面。Length、Height、Depth 分别表示长方体的长度、 宽度、高度。这三个值分别对应于全局坐标系的 X、Y、Z 轴方向,输入正值时默认为全局坐 标系 XYZ 轴的正方向,输入负值时则为全局坐标系 XYZ 轴相应的负方向。如果需要参数化 长方体的长度、宽度、高度这三个值,可在相应的输入值处右击鼠标,在快捷菜单中执行 Parameterize>Create Design Variable,直接创建设计变量,或选中 Reference Design Variable 来 选择已经创建好的设计变量。

2. 创建拉伸体 (Extrusion)

对于一些复杂的不规则的几何形体,可以使用此工具来创建。单击 Solids 工具栏中的 **送** 按钮,在模型树上方出现长方体属性栏,如图 2-9 所示。

MSC Adams	多体动力学仿真基础与实例解析
-----------	----------------

New Pa	rt 🗾	
Profile	Points	•
	Closed	
Path	About Center	•
Length	(5.0cm)	1

图 2-9 创建拉伸体对话框

在下拉列表框中有 New Part、Add to Part、On Ground 选项,分别表示所创建的拉伸体是新创建、添加到已有的构件上或者属于地面。在 Profile 栏右侧可选择 Points、Curve 选项,分别表示拉伸体截面可由点或曲线生成。

选择 Points 创建截面时,可通过选择 Closed 来决定首尾点是否封闭。

Path 栏右侧的可选项有 Forward、About Center、Backward、Along Path,分别表示将截面沿着 Z 轴正方向拉伸、沿着 Z 轴正负方向对称拉伸、沿着 Z 轴负方向拉伸、自定义拉伸路径。 Length 栏表示截面拉伸的长度,为正值。

2.1.4 创建柔性体

当考虑系统中构件的柔性变形对分析结果的影响时,需要使用柔性体来代替刚性体。在 Adams/View 中可以输入其他有限元软件创建的柔性体中性文件 MNF 来直接创建柔性体、将 已有刚性体转换为柔性体、将已有柔性体转换为另一柔性体、生成离散梁单元连杆,也可以对 柔性体构件进行移动、旋转和镜像。柔性体工具栏如图 2-10 所示。

图 2-10 柔性体工具栏

单击柔性体工具栏左上角的 🔌 按钮,创建柔性体对话框如图 2-11 所示。

Create a Flexible	Body
Flexible Body Name:	.modəl_1.FLEX_BODY_2
Damping Ratio: Generalized Damping Location	Use Default
Orientation -	
Relative To	
More FEM Tr	anslateMNF XFormOKApplyCancel

图 2-11 创建柔性体对话框

24

第2章

在 Flexible Body Name 栏中输入要创建的柔性体名称。

在 MNF 可选项中,可输入 MNF 或 MD DB 文件名。

Damping Ratio 栏中可设置阻尼比:1%为频率小于100的模态衰减;10%为频率在100~1000 之间的模态衰减;100%为频率大于1000的模态衰减。

Generalized Damping 设置使用何种阻尼衰减类型,在 Location 中输入起始坐标位置,方向可选择 Orientation (相对全局坐标系)、Along Axis (以起点和终点连线为轴)、In Plane (沿平面)。FEM Translate 适用于使用 MSC Nastran 软件的用户,用户可根据需要进行设置,如图 2-12 所示。

Translate N	astran output to Mcdal Neutr	al File			×
MSC Nastran	•				
OUTPUT2 File	e Name:				
Invariants:	Full Set	Apply Mesh	Coarsening	Algorithm	
Units: Formatting:	S Siandard Portable	Target Mesh Resolution [%]	<u>.</u>	15	
Remove Ir	nternal Sold Element Gecmetry	Face Smoothing [cegree]	4	15	×
		Retained Node List:		Colinear Point	Removal
			OK	Apply	Cancel

图 2-12 MSC Nastran Translate 设置

2.1.5 添加特征

创建了几何实体后,用户可以对其进行修饰处理,包括倒直角(Chamfer)、倒圆角(Fillet)、 钻孔(Hole)、凸圆(Boss)、抽壳(Hollow)等特征,如图 2-13 和表 2-1 所示。

表 2-1 模型特征命令

图标	名称	功能	设置参数
	Chamfer	倒直角	倒角边长度(Width)
	Fillet	倒圆角	圆角半径(Radius) 末端半径(End Radius)
(Hole	钻孔	孔半径(Radius) 孔深(Depth)

 图标
 名称
 功能
 设置参数

 Image: Boss
 凸圆
 半径(Radius) 高度(Height)

 Image: Boss
 凸圆
 Pgg(Thickness)

2.1.6 布尔操作

创建几何实体和进行特征修饰后,还可以通过布尔操作将简单的几何实体合并到一起创建 更为复杂的几何实体模型,如图 2-14 和表 2-2 所示。

表 2-2 布尔运算操作

图标	名称	功能	说明	
	Union	合并两个相交的实体	实体2并入实体1,实体2被删除	
P	Merge	合并两个不相交的实体	实体2并入实体1,实体2被删除	
P	Intersect 两个实体相交		实体1变成两实体相交部分,实体2被删除	
	Cut	用一个实体切割另一个实体	用实体1切割实体2,实体2中同实体1相 交部分被切除	
Q	Split	还原被布尔运算的几何实体	还原被布尔运算前的几何实体	
I.	Chain	将构造线首尾相连成一条线	构造复杂的几何轮廓	

2.2 CAD 导人建模

通过 Adams/Exchange 模块,用户可以将所有来源于产品数据交换库(PDE/Lib)的标准 格式表示的机构部件或系统的几何外形进行数据导入,从而实现 Adams 与 CATIA、IDEAS、 UG、Pro/E、MDT、Inventor、Solidworks、Solidedge 等 CAD 软件之间的标准通用接口。标准 格式包括 IGES、STEP、DWG、DXF、Stereolithography、Wavefront、Render、Shell 及 Parasolid 等,数据传入 Adams 软件时,能够保持该模型原有的精度。

也可以通过 Adams_CAD_Tranlators 模块,直接导入和导出 CAD 几何模型原始文件(需要单独的 license),不需要通过中立格式文件传递 CAD 几何模型,可直接读取 CAD 装配体文件到 Adams 中并生成运动部件,可以精确地定义系统几何模型。

26

• 支持的文件格式有 CATIA V4, CATIA V5, IGES, STEP, VDA-FS, Pro/ENGINEER (Pro/E), Parasolid (PS), Unigraphics (UG), Solidworks, Inventor, ACIS。

构件建模

第2章

• 支持的输入输出文件格式版本见表 2-3。

Import 格式	版本支持	Export 格式	版本支持
CATIA V4	CATIA 4.1.9~CATIA 4.2.4	CATIA V4	CATIA 4.1.9~CATIA 4.2.4
CATIA V5	R2~R21	CATIA V5	R2~R21
IGES	5.3 所有版本	IGES	5.3
Inventor	6/2012~11/2012	Inventor	6/2012~11/2012
ACIS	ACIS R22	ACIS	R22
Parasolid	10~22	Parasolid	12~22
Pro/E	16~Wildfire 5		
SolidWorks	98~2011		
STEP	AP203, AP214(Geometry Only)	STEP	AP203, AP214(Geometry Only)
Unigraphics	11~18, NX~NX 7.5		
VDA-FS	1.0&2.0	VDA-FS	2.0

表 2-3 Adams/Translators 支持的几何格式

2.3 编辑模型

2.3.1 进入编辑窗口

在 Adams 中建立的虚拟样机模型,所有构件都具有一定的物理特性,包括质量、转动惯量、初速度、初始位置和初始方向。利用系统提供的几何建模工具,通过构件的体积和材料密度,可以自动计算构件的质量和转动惯量。用户也可以自定义构件的质量和转动惯量,及初始条件等信息。

用户对构件特性进行修改,可通过以下几种方式:

(1) 鼠标右击需要修改特性的构件,单击弹出菜单中的 Modify,如图 2-15 所示,出现 构件特性修改对话框。

图 2-15 修改构件特性

MSC Adams 多体动力学仿真基础与实例解析

(2)菜单栏 Edit>Modify。单击要修改的构件,然后通过单击菜单 Edit>Modify,显示该构件的特性修改对话框;没有选择构件而直接单击菜单 Edit>Modify,将显示 Database Navigator 数据库浏览对话框,可在浏览器中选择需要修改的构件。

(3) 在模型树中选择 Bodies 中要修改的构件。右击需要修改特性的构件,单击弹出菜单中的 Modify,出现构件特性修改对话框。

2.3.2 修改外观

修改构件几何元素的外观,可通过鼠标选中需要修改的几何元素并右击,在弹出菜单中选择 Appearance 项,弹出修改外观对话框,也可以通过单击菜单 Edit>Appearance 弹出数据库浏 览器,在浏览器中选择需要修改外观的几何元素,如图 2-16 所示。

🚺 Edit Appearance		
Entity PART_1 Type Part		
Visibility	C On C Off ⊙ Inherit	
Name Visibility	C On C Off C Inherit	
Color	MAGENTA	
Color Scope	All	
Render	Filled O Wireframe	
Transparency		
Icon Size	30.0	
	OK Apply Cancel	

图 2-16 修改构件元素外观对话框

在修改对话框中,可以修改几何元素的可见性(Visibility)、几何元素名称的可见性(Name Visibility)、颜色(Color)、颜色应用范围(Color Scope)、渲染样式(Render)、透明性(Transparency)、图标的显示大小(Icon Size)。

2.3.3 修改名称和方位

如图 2-17 所示,在 Modify Body 对话框中,将 Category 设为 Name and Position 项,在 New Name 中输入构件的新名称,在 Location 中输入移动的位移量,在 Orientation 中输入旋转的角度可以将构件进行平动或旋转,在 Relative to 中输入参考坐标,可将构件相对于该参考坐标系进行平动或旋转。

Adams/View 中还提供了一种精确修改构件方位的方法,可先在工作界面中选中需要修改的构件,单击菜单 Edit>Move,弹出精确移动对话框,如图 2-18 所示。

在 Relative to the 后面的输入框中可选择 part、marker 作为参考坐标,在 C1、C2、C3 中输入相对位移的距离,在 A1、A2、A3 中输入相对旋转的角度值,也可以直接在坐标框中输入旋转或移动值,直接旋转坐标轴进行旋转完成。

28

De de	and d		
Pody	part 1		
Category	Name and Position	<u> </u>	
	la e al		
New Name	link_1		
Solver ID	2		
Location	0.0, 0.0, 0.0		
Orientation	00,00,00		
Relative To	.model_1		
E Planar			
i i idiriai			

图 2-17 构件名称方位修改对话框

Rotate	Translate	te Relocate the part report_1		_1
(*	Relative to the Tmarker PART_2_fex.MAR_2		T_2_fex.MAR_2
		C1= 0	C2= 0	C3= 0
		A1= 0	A2= 0	A.3= 0

图 2-18 精确移动对话框

2.3.4 修改质量信息

在 Modify Body 对话框中,将 Category 设为 Mass Properties,即可给构件赋予不同的材料 及质量信息,如图 2-19 所示。

Modify Body	And the owner of the owner owner			X
Body	PART_1			
Category	Mass Properties			•
Define Mass By	Geometry and Material Type			-
Material Type	.model_1.steel			
Density	7.801E-006 kg/mm**3			
Young's Modulus	2.07E+005 newton/mm**2			
Poisson's Ratio	0.29			
		Show	calculated i	inertia
M		<u>0</u> K	Apply	<u>Cancel</u>

图 2-19 构件的质量信息修改对话框

MSC Adams 多体动力学仿真基础与实例解析

通过 Define Mass By 项可有如下三种方法定义构件质量信息:

(1) Geometry and Material Type,通过几何形状和材料计算构件质量和转动惯量信息,可在 Material Type 材料库中选择输入材料,系统根据材料的物理特性自动计算构件的质量和转动惯量。

(2) Geometry and Density,通过直接输入构件密度,系统自动计算构件的质量和转动 惯量。

(3) User Input,用户可以自定义构件的质量和转动惯量。需要直接输入构件的质量、转动惯量、质心标记点、转动惯量参考标记点等信息。

2.3.5 修改初始运动条件

在 Modify Body 对话框中,将 Category 设为 Velocity Initial Conditions,出现如图 2-20 所示的对话框,可对构件初始线速度和角速度进行设定。

Body PART_1	
Category Velocity Initia C	onditions
Translational velocity along	Angular velocity about
 Ground C Marker 	 Part CM O Marker
□ X axis	T X axis
Γ Y axis	🗖 Y axis
Z axis	C Z axis
2	<u>Q</u> K <u>Apply</u> <u>Cancel</u>

图 2-20 构件的初始速度修改对话框

2.4 实例:建模

本节在 Adams/View 中绘制挂锁模型,通过该例读者可以学到一些几何建模的综合方法。

(1) 启动 Adams/View,创建一个新的数据文件,在模型名称输入框中输入 Latch,将单位设置成 MMKS。

(2) 设置工作环境。操作步骤如下:

1)在 Settings 菜单中选择 Units,将长度单位设置为厘米 (cm),单击 OK 按钮。

2)在 Settings 菜单中选择 Working Grid,则弹出工作栅格设置对话框。

3) 将工作栅格尺寸设置为 25, 格距为 1, 单击 OK 按钮。

4) 在 Settings 菜单中选择 Icons, 弹出 Icons 设置对话框,将 Model Icons 的所有默认尺 寸改为 2,单击 OK 按钮。

第2章

(3) 建立设计点。操作步骤如下:

1) 单击 Dynamic Pick 图标^Щ并将工作栅格进行放大。用光标框出想观察的区域。

2) 单击工具栏 Bodies>Construction, 再单击 Point 图标。

3) 按照图 2-21 中 Table 3 所列数据放置设计参考点。使用点的默认设置,即 Add to Ground 和 Don't Attach。

Table 3. Points Coordinate Locations

	X Location	Y Location	Z Location
POINT_1	0	0	0
POINT_2	3	3	0
POINT_3	2	8	0
POINT_4	-10	22	0

图 2-21 设计参考点坐标

注意: 当 放置 许 多 点 时 , 不 用 重 复 选 择 Point 图 标 , 只 需 在 图 标 上 双 击 即 可 。 (4) 创 建 曲 柄 , 操 作 步 骤 如 下 :

1)用鼠标右键打开工具包,选择工具栏的 🦾 按钮,把厚度和半径设为 1cm。

2) 用鼠标左键点选 Point_1、Point_2 和 Point_3,单击右键使曲柄闭合。

(5) 重新命名曲柄。操作步骤如下:

1) 将光标放在曲柄上。

2)单击鼠标右键,弹出快捷菜单,单击 Part:Part_1,选择 Rename 命令。出现 Rename Object 对话框。

3) 模型名不变,修改物体名称。如图 2-22 所示,将 Part_1 改为 Pivot。

Object	.Latch.PART_	1	
New Name	Latch pivot		
	<u>0</u> K	Apply	Cancel

图 2-22 重命名曲柄

(6) 创建手柄。操作步骤如下:

1)选择工具 Link <mark>/</mark>。

2) 在 Point_3 和 Point_4 之间建立连杆。

注意: 只有当点的标识出现才表示已把连杆附着到点上。

3)为连杆改名,将 Part:Part_1 改为 handle。

(7) 创建钩子(hook) 和连杆(slider)。操作步骤如下:

1)选择拉伸工具 Extrusion[™],设置长度为 1cm,用鼠标左键按图 2-23 中表 4 所列值选取位置,最后单击鼠标右键使之闭合。

2)当鼠标放在物体上时,会出现对话窗,右击选取其几何外形,这时在拉伸体的各顶点 处出现叫做"热点"的小方块。可以用这些热点修改拉伸体侧面外形的形状。 Table 4. Extrusion Coordinate Values

X Location	Y Location	Z Location
5	3	0
3	5	0
-6	6	0
-14	6	0
-15	5	0
-15	3	0
-14	1	0
-12	1	0
-12	3	0
-5	3	0
4	2	0

图 2-23 钩子截面参考点坐标

- 3)将拉伸体的名字改为 hook。
- 4) 再创建两个设计点 Point_5 和 Point_6, 位置如图 2-24 中表 5 所示。

Table 5. Points Coordinate Locations

	X Location	Y Location	Z Location
POINT_5	-1	10	0
POINT_6	-6	5	0

图 2-24 设计参考点坐标

- 5) 在两个新设计点之间建立连杆。在点取之前要确认点的标识显现出来。
- 6) 将连杆改名为 slider。
- (8)存储模型数据文件。

用 Save Database As 命令把当前的模型存为 Adams/View 二进制文件,该文件存储了有关 模型的所有信息。

在 File 菜单中选择 Save Database As, 保存文件名为 Latch。生成的虚拟样机模型如图 2-25 所示。

图 2-25 Latch 虚拟样机模型

