第一篇 电工与电机实验

实验一 验证基尔霍夫定律

一、实验目的

- (1) 学会用电流插头、插座测量各支路电流的方法。
- (2) 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

二、实验原理

(1) 基尔霍夫电流定律(KCL): 在集总电路中,任何时刻,对任一节点, 所有流出(或流入)节点的支路电流的代数和恒等于零。即

$$\sum I = 0$$

同时规定: 若流出节点的电流为正,则流入节点的电流为负。

(2) 基尔霍夫电压定律(KVL): 在集总电路中,任何时刻,对任一回路, 所有支路电压的代数和恒等于零。即

$$\sum U = 0$$

上式求和时,需要指定一个回路的绕行方向,凡支路电压的参考方向与回路的绕行方向相同者,该电压前面取 "+"号;支路电压的参考方向与回路的绕行方向相反者,前面取 "-"号。

三、实验仪器与设备

实验所需设备如表 1-1-1 所示。

表 1-1-1 实验仪器与设备

序号	名称	型号与规格	数量
1	直流可调稳压电源 1	0∼30V	1
2	直流可调稳压电源 2	0∼30V	1
3	直流电压表	0∼200V	1
4	直流毫安表	0∼200mV	1
5	验证基尔霍夫定律与叠加原理的实验线路板		1

四、实验注意事项

- (1) 所有需要测量的电压值,均以直流电压表测量的读数为准,不以电源表盘 指示值为准。
- (2) 实验预习时,要对电路进行理论计算,测量电压、电流时,根据计算值 合理选择挡位。不清楚测量值的范围时,可以先用高挡位,再选用合适的低挡位。
- (3) 用指针式电流表或电压表进行测量时, 若指针反偏, 此时必须调换极性, 重新测量,此时指针应正偏,就可以读值了,注意记录正负号。
- (4) 如果假设电流参考方向如图 1-1-1(a) 所示,那么,电流表指示正值时, 电流记录为正。我们知道 $U_{AB}=U_{A}-U_{B}$, 如果电压表接线如图 1-1-1 (b) 所示, 那 么,电压表指示为正值时, U_{AB} 记录为正。

图 1-1-1 电流、电压表读数示例

(5) 在实验台上用电流插头测量各支路电流时,要弄明白电流插头插入电流 插座后,插头的两根线分别接到了电流插座的哪一端。应该注意仪表的极性及数 据表格中"+"、"-"号的记录。电流插头的使用如图 1-1-2 所示。

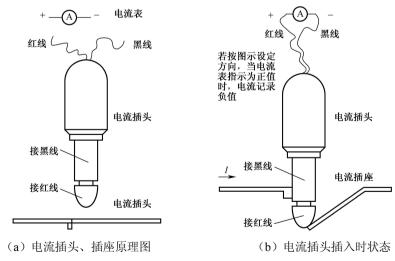


图 1-1-2 实验台电流插头测量各支路电流示例

- (6) 在图 1-1-3 所示的实验线路中, 切换开关 S_1 、 S_2 , 切到 1 位置时, 接通 电源,切到2位置时,线路短路;切换开关S₃,切到1位置时,330Ω电阻接入电 路,切到2位置时,二极管 VD 接入电路。
- (7) 防止稳压电源两个输出端碰线短路。电源 E_1 或 E_2 不作用时,将切换开 关 S₁、S₂切到 2 位置,严禁用导线直接短接,这样会电压短路,烧坏电压源。

五、实验内容及步骤

实验线路如图 1-1-3 所示。

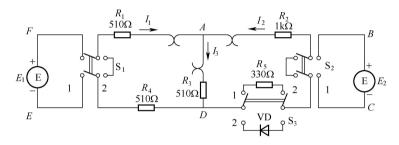


图 1-1-3 实验线路图

方法步骤如下:

- (1) 实验前先任意设定三条支路的电流参考方向,如图 1-1-3 中的 I_1 、 I_2 、 I_3 。
- (2) 电源 E_1 、 E_2 分别并直流电压表,并调整电压分别为 6V、12V。
- (3) 分别将两路直流电压源接入电路。将切换开关 S_1 、 S_2 、 S_3 都切到位置1。
- (4) 熟悉电流插头和电流插座的结构,将电流插头接至毫安表的"+"、"-" 两端,并根据设定的电流参考方向,确定所读数据的正负值。将电流插头分别插 入三条支路的三个电流插座中,读出并记录电流值,填入表 1-1-2 中。

测量项目	I_1	I_2	I_3	节点 A 电流 ΣI_{A}
计算值				
测量值				
相对误差				

表 1-1-2 验证基尔霍夫电流定律(单位 mA)

(5) 用直流电压表分别测量回路中的电源及电阻元件上的电压值,要理解电 压表正、负指示的含义,实际电路中两个节点上电压的高低,记录数据时注意正、 负,记录于表 1-1-3 中。

测量项目	$U_{ m FE}$	$U_{ m FA}$	$U_{ m AD}$	U_{AB}	$U_{ m BC}$	U_{CD}	$U_{ m DE}$	FADEF 回路 ΣU	ABCDA 回路 ΣU	FBCEF 回路 ΣU
计算值										
测量值										
相对误差										

表 1-1-3 验证基尔霍夫电压定律(单位 V)

(6) 对电路中的节点 A, 验证基尔霍夫电流定律 (KCL), 并计算产生的误 差。分别对表 1-1-3 中的三个电压回路验证基尔霍夫电压定律(KVL),并计算产 生的误差,填入表 1-1-3 中。

六、预习思考题

- (1) 根据图 1-1-3 的实验电路参数计算出待测的电流 I_1 、 I_2 、 I_3 和各电阻上 的电压值,记入表中,以便实验测量时可正确地选定毫安表和电压表的量程、并 计算相对误差。
- (2) 实验中, 若用指针式万用表直流毫安挡测量各支路电流, 什么情况下可 能出现毫安表指针反偏?应如何处理?在记录数据时应注意什么?若用直流数字 毫安表进行测量时,则会有什么显示呢?

七、实验报告要求

按实验基础知识(三)的要求书写实验报告,并完成以下各项要求。

- (1) 根据实验数据,选定实验电路中的一个节点 A,验证 KCL 的正确性。
- (2)根据实验数据,选定实验电路中的任一个闭合回路,验证 KVL 的正确性。
- (3) 误差原因分析。
- (4) 根据实验数据表格,进行分析、比较,归纳,总结实验结论。
- (5) 写出心得体会。

实验二 验证叠加定理

一、实验目的

- (1) 验证叠加定理的正确性,加深对叠加定理的理解。
- (2) 验证线性电路的齐次性。

二、实验原理

- (1) 叠加定理是指由多个独立电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立电源单独作用时,在该元件上所产生的电流或电压的代数和。
- (2) 线性电路的齐次性是指当激励信号(某独立电源的值)增加或减小 K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小 K 倍。

三、实验仪器与设备

实验所需仪器与设备如表 1-2-1 所示。

序号 名称 型号与规格 数量 直流可调稳压电源1 $0 \sim 30 \text{V}$ 1 1 直流可调稳压电源2 $0\sim30V$ 2 1 3 直流电压表 $0\sim200V$ 1 $0\sim$ 200mV 4 直流毫安表 1 验证叠加原理的实验线路板

表 1-2-1 实验仪器与设备

四、实验注意事项

- (1) 所有需要测量的电压值均以电压表测量的读数为准,不以电源表盘指示值为准。
- (2)实验预习时,要对电路进行理论计算,测量电压、电流时,根据计算值合理选择挡位。不知道要测量值的范围时,可以先用高挡位,再选用合适的低挡位。

- (3)用指针式电流表或电压表进行测量时,若指针反偏,此时必须调换极性, 重新测量,此时指针正偏,就可以读值了,注意记录正负号。
 - (4) 电压表和电流表的读数方法和记录值参见实验一。
- (5) 在图 1-2-1 所示的实验线路图中,切换开关 S_1 、 S_2 ,切到 1 位置时,接通电源,切到 2 位置时,线路短路;切换开关 S_3 ,切到 1 位置时,330 Ω 电阻接入电路,切到 2 位置时,二极管 VD 接入电路。
- (6) 防止稳压电源两个输出端碰线短路。电源 E_1 或 E_2 不作用时,将切换开关 S_1 、 S_2 切到 2 位置,不能切到 1 位置将电压调为零,也不能用导线直接短接。

五、实验内容及步骤

实验线路如图 1-2-1 所示。

图 1-2-1 实验线路图

- (1) 在电源 E_1 、 E_2 两端分别并联直流数字电压表,并调整电压为 12V、6V,然后将两路直流电压源接入电路。
- (2) 令 E_1 电源单独作用:将切换开关 S_1 、 S_3 切到 1 位置,切换开关 S_2 切到 2 位置,用直流毫安表和直流电压表分别测量各支路电流及各电源、电阻元件两端的电压,数据记入表 1-2-2 中。

测量项目 实验内容	<i>I</i> ₁ (mA)	I ₂ (mA)	I ₃ (mA)	$U_{ ext{FE}}$ (V)	U_{BC} (V)	U_{FA} (V)	U_{AB} (V)	$U_{ m AD} \ (m V)$	$U_{ m DE} \ (m V)$	U_{CD} (V)
E_1 单独作用(理论值)										
E_1 单独作用(测量值)										
E ₂ 单独作用(理论值)										
E ₂ 单独作用(测量值)										

表 1-2-2 叠加定理的验证

4志	丰
54	ᄍ

测量项目 实验内容	<i>I</i> ₁ (mA)	I ₂ (mA)	I ₃ (mA)	$U_{ ext{FE}} \ (ext{V})$	$U_{ m BC}$ (V)	U_{FA} (V)	U_{AB} (V)	$U_{\mathrm{AD}} \ (\mathrm{V})$	$U_{ m DE} \ (m V)$	U_{CD} (V)
E_1 、 E_2 共同作用(理论值)										
E_1 、 E_2 共同作用(测量值)										
验证叠加定理										
2E ₂ 单独作用 (理论值)										
2E ₂ 单独作用(测量值)										
验证线路齐次性										

- (3) 令 E_2 电源单独作用:将切换开关 S_2 、 S_3 切到 1 位置,切换开关 S_1 切到 2位置,重复(2)中的测量并记录数据于表 1-2-2中。
- (4) 令 E_1 和 E_2 电源共同作用:切换开关 S_1 、 S_2 、 S_3 都切到 1 位置,重复上 述的测量并记录。
- (5) 将 E_2 的数值调至+12V,令 E_2 电源单独作用:将切换开关 S_2 、 S_3 切到 1 位置,切换开关 S₁切到 2位置,重复上述的测量并记录。
- (6) 将切换开关 S_3 切到 2 位置,即将 R_5 (330 Ω) 换成二极管 IN4007, 重复 $(1) \sim (5)$ 的测量过程,数据记入表中(表可以仿 1-2-2 自己画出)。
 - (7) 分析实验产生的误差。

六、预习思考题

- (1) 根据图 1-2-1 所示的实验电路参数,计算出各种情况下电流 I_1 、 I_2 、 I_3 的理论值和各电阻上的电压的理论值,记入表中,以便实验测量时可正确地选定 毫安表和电压表的量程。
- (2) 叠加原理中 E_1 、 E_2 分别单独作用,在实验中应如何操作?可否直接将 不作用的电源(E_1 或 E_2)调整到零或用导线短接?
- (3) 实验电路中, 若有一个电阻器改为二极管, 试问叠加原理的叠加性与齐 次性还成立吗? 为什么?

七、实验报告要求

按实验基础知识(三)的要求书写实验报告,并完成以下各项要求。

- (1) 误差原因分析。
- (2) 根据实验数据表格进行分析、比较和归纳。总结实验结论,即验证线性 电路的叠加性与齐次性。

- (3)各电阻器所消耗的功率能否用叠加原理计算得出? 试用上述实验数据进 行计算并作出结论。
- (4) 实验电路中, 若有一个电阻改为二极管, 试问叠加原理与齐次性还成立 吗?并用"实验内容及步骤"中(6)的实验数据说明。
 - (5) 写出心得体会。