2

FloTHERM 中传热学与流体力学基础

2.1 热传导

热传导又称导热,是指物体各个部分无相对位移或不同物体直接接触时,依靠分子、原子及自由电子等微观粒子的热运动而进行的热量传递现象。热传导属于物质的属性,热传导过程可以在固体、液体及气体内部或它们的交界面处发生。但在引力场的作用下,单纯的热传导过程只发生在固体中。因为在有温差存在时,液体和气体中可能出现热对流现象而难以维持单纯的热传导。在电子设备中,温度较高的元件将热量传递给与之接触的温度较低的 PCB 板、PCB 板内部温度较高部分将热量传递给温度较低部分都是属于热传导。

2.1.1 热传导微分方程式

如其他数学物理问题一样,存在热传导过程的固体的内部温度场满足某个微分方程,即 热传导微分方程式(假设λ、ρ和 c 均为常数)。

$$\frac{\partial t}{\partial \tau} = \frac{\lambda}{\rho c} \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right) + \frac{q_v}{\rho c}$$
(2-1)

对于稳态热传导,公式可以简化为:

$$\left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}\right) + \frac{q_v}{\lambda} = 0$$
(2-2)

可见进行稳态热传导计算时,可以不考虑材料的密度 p 和比热 c。关于热传导微分方程式的详细内容可以参考参考文献[3]。

2.1.2 傅里叶定律

1822 年傅里叶提出了热传导基本定律的数学表达式,也称为傅里叶定律。傅里叶在实验研究热传导过程的基础上,把热流矢量和温度梯度联系起来,得下式:

FIoTHERM 中传热学与流体力学基础

$$q = -\lambda \left(i \frac{\partial t}{\partial x} + j \frac{\partial t}{\partial y} + k \frac{\partial t}{\partial z} \right)$$
(2-3)

或

$q = -\lambda \operatorname{grad} t$

(2-4)

式中比例系数 *λ* 称为热导率,负号表示热流矢量的方向与温度梯度的方向相反,即热流矢量的方向沿着温度降低的方向。式(2-3)和式(2-4)具有一个隐含的条件,即固体材料的热导率在各个方向上是相同的。这种热导率与方向无关的材料称为各向同性材料。

2.1.3 热导率

热导率是物质的一个重要热物性参数,式(2-4)就是热导率的定义式,即:

$$\lambda = \frac{q}{-\text{grad}t} \tag{2-5}$$

材料热导率的定义为:在物体内部垂直于热传导方向取两个相距1米、面积为1平方米的平行平面,若两个平面的温度相差1K,在1秒内从一个平面传导至另一个平面的热量。一般而言,金属的热导率比非金属的高;物质的固相热导率比它们的液相的要高;物质的液相热导率要比其气相的高;通常情况下与纯物质相比,材料中的化学杂质会使其热导率发生变化;材料的热导率也会随着温度的变化而变化。常用材料的热导率如表2-1所示。

名称	热导率 W/(mK)	名称	热导率 W/(mK)
AlSiC (vol frac SiC-63%)	200.00	Inconel	15.00
AlSiC (vol frac SiC-68%)	220.00	Invar (Ni36)	10.15
Alumina (94%)	18.00	Iron (Pure)	80.00
Alumina (96%)	25.00	Magnesium (Pure)	150.00
Alumina (Typical)	16.00	Molybdenum (Pure)	138.00
Aluminum (Anodized)	201.00	Nickel (Pure)	59.00
Aluminum (Pure)	201.00	Nylon-6 (Typical)	0.27
Aluminum Beryllium AlBeMet AM162	210.00	Nylon-66 (Typical)	0.26
Aluminum Nitride	170.00	Platinum (Pure)	69.00
Aluminum-5052	137.00	Plexiglass (Typical)	0.20
Aluminum-6061	180.00	Polycarbonate (Typical)	0.20
Beryllium Oxide	240.00	Polyimide (Typical)	0.19
Brass (Naval)	110.00	Polyisoprene (Hard)	0.16
Bronze (Manganese)	53.00	Polyisoprene (Natural)	0.13
BT	0.20	Polystyrene (Typical)	0.13
Copper (Aluminized)	83.00	PTFE (Typical)	0.25
Copper (Pure)	385.00	Silicon (Pure)	117.50*

表 2-1 材料的热导率

			绥 衣
名称	热导率 W/(mK)	名称	热导率 W/(mK)
Diamond (Synthetic)	2000.00	Silver (Pure)	419.00
Duraluminum (Strong alloy)	180.00	Steel (Mild)	63.00
Epoxy Overmold (Typical)	0.68	Steel Stainless-302 (Cr18/Ni8)	16.30
Epoxy Resin (Typical)	0.20	Titanium (Pure)	21.00
FR4	0.30	Tungsten (Pure)	163.30
Gallium Arsenide	48.39*	Tungsten Copper (80/20)	180.00
Glass (Typical)	1.05	Tungsten Copper (85/15)	167.00
Glass Lid Seal (Typical)	0.25	Tungsten Copper (90/10)	157.00
Gold (Pure)	296.00	Zinc (Pure)	111.00

* 材料温度为100℃。

1. 热导率随温度变化

气体的热导率随温度升高而增大。对于绝大多数液体而言,当温度升高时热导率下降。 绝大多数纯金属的热导率会随着温度的升高而减小。对于电子设备而言,其温度变化范围为 0~150℃。在此范围之内,各类材料的热导率受温度影响很小。例如,金属铜在此范围内的热 导率值变化在 3%之内。因此 FloTHERM 中忽略了绝大多数材料温度对热导率的影响。

电子半导体行业中最常用的材料是硅。在进行元件温度精确仿真时,需要正确设置材料 硅的热导率。硅材料的热导率随温度变化很大。FloTHERM 软件材料库中,以100℃时的硅热 导率为基础,对硅的热导率进行线性拟合。

$$\lambda_{si}(t) = 117.5 - 0.42 \times (t - 100) \tag{2-6}$$

 $\lambda_{si}(t): 硅热导率 W/(mK)。$

t: 硅的温度℃。

这是一个斜率为负的线性函数,所以当温度在 380℃以上时,热导率 λ 将为负值。热导率负 值对于求解热传导微分方程式可能存在问题。例如,硅芯片产生大量的热,当第一次进行迭代 计算时,温度的计算值超过了 380℃。即便在实际情况中,硅芯片的温度会由于外部的散热而降 低,但对于仿真计算而言已经显得太晚。如果出现这种情况,可以尝试在第一次迭代计算时将 材料热导率设为不随温度变化。当第一次迭代计算完成之后,将材料热导率设为随温度变化。

砷化镓的热导率处理方式与材料硅相似。如果仿真项目以热传导为主,并且材料热导率 随温度变化明显,则建议采用热导率随温度变化的形式。如果热导率在不同温度下的数据不完 整,则可预估材料的实际温度,并且将此温度下的材料热导率输入至软件中。

2. 热导率随纯度变化

与纯物质相比,材料中的化学杂质将影响其热导率。例如,电子行业中经常用到的氧化铝(Al₂O₃),与 FR4 基础材料相比,其价格低廉且热导率更高。如图 2-1 所示,氧化铝的热导率会随着纯度的下降而减小。

如果仿真项目以热传导为主,则需要关注氧化铝的热导率数据。确定氧化铝的纯度,从 而正确设置其热导率值。

图 2-1 不同纯度氧化铝热导率随温度变化

2.1.4 热阻

在传热学中,参照电学欧姆定律的形式来分析热量传递过程中热量与温度差的关系,即 把热流密度的计算式改写为欧姆定律的形式。热电模拟关系为解决传热学问题提供了很大方 便,电学中的许多规律,如电阻串联、并联公式及基尔霍夫定律等关系式均可等效地应用于传 热领域。

$$R = \frac{T_1 - T_2}{Q}$$
(2-7)

与欧姆定律对照可以看出, 热流相当于电流, 温度差相当于电位差, 而热阻相当于电阻。 由此, 得到了一个在传热学领域非常重要而且实用的概念——热阻。对于不同的热量传递方 式, 热阻可以具有不同的表达式。对于上述热传导过程, 假设进入右侧端面的热量 *Q* 全部从 左侧端面出来, 物体的两个端面温度分别为 *T*₁ 和 *T*₂, 并且端面上不存在温度差, 如图 2-2 所示。

图 2-2 热阻示意图

在实际情况中,理想的一维热传导并不存在。电子设备中的温度场往往是三维的,在基于热阻概念进行设备散热分析时,必须正确理解热阻的概念。

如图 2-3 所示,元件的上表面存在温度差。假设元件产生的所有热量均通过上表面散去。 但由于上表面非均温面,所以无法通过热阻公式计算元件结点至上表面外壳的热阻值。

图 2-3 元件上表面温度

2.1.5 二维矩形区域稳态热传导问题数值求解

一个边长为 1m 的二维矩形区域,其内部无内热源,热导率 λ 为常数。其中三个边界面温度为 25℃,一个边界面温度为 40℃。求该矩形区域内的温度分布。

基于式(2-1)热传导微分方程式,对于上述问题的微分方程和边界条件为:

$$\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} = 0 \tag{2-8}$$

x = 0, t = 25 °C x = 1, t = 25 °C y = 0, t = 25 °C y = 1, t = 40 °C

如图 2-4 所示进行矩形区域离散, x 方向总结点数为 N, y 方向总结点数为 M, 区域内任一结点用 *i,j* 表示。

FloTHERM 中传热学与流体力学基

方程对于图 2-4 中的所有内部结点均适用,因此可以写为:

$$\left(\frac{\partial^2 t}{\partial x^2}\right) + \left(\frac{\partial^2 t}{\partial y^2}\right) = 0 \tag{2-9}$$

用 ij 结点的二阶中心差分代替上式中的二阶导数,得:

$$\frac{t_{i+1,j} - 2t_{i,j} + t_{i-1,j}}{\Delta x^2} + \frac{t_{i,j+1} - 2t_{i,j} + t_{i,j-1}}{\Delta y^2} = 0$$
(2-10)

上式整理成迭代计算形式,即 t_{i,i}通过周围四个结点描述:

$$t_{i,j} = \frac{\Delta y^2}{2(\Delta x^2 + \Delta y^2)} (t_{i+1,j} + t_{i-1,j}) + \frac{\Delta x^2}{2(\Delta x^2 + \Delta y^2)} (t_{i,j+1} + t_{i,j-1})$$
(2-11)

其中*i* = 2,3,…,*N*−1, *j* = 2,3,…,*M*−1.

补充四个边界上的第一类边界条件得:

$$\begin{split} t_{1,j} &= 25 \ ^{\circ} \mathrm{C} & (j = 1, 2, \cdots, M) \\ t_{N,j} &= 25 \ ^{\circ} \mathrm{C} & (j = 1, 2, \cdots, M) \\ t_{i,1} &= 25 \ ^{\circ} \mathrm{C} & (i = 1, 2, \cdots, N) \\ t_{i,M} &= 40 \ ^{\circ} \mathrm{C} & (i = 1, 2, \cdots, N) \end{split}$$

采用迭代法对式 (2-11) 进行求解计算。迭代法的原理是先任意假定一组内结点温度的初始值 $t_{i,j}^0$,将此初始值代入公式求得一组新的结点温度值 $t_{i,j}^1$,将 $t_{i,j}^1$ 代入公式求得一组新的结点温度值 $t_{i,j}^2$,这样的迭代过程反复进行,直至前后两次迭代各结点温度差值中的最大差值小于预先规定的允许误差 ε 为止,即:

$$\max |t_{i,j}^{k+1} - t_{i,j}^{k}| \leq \varepsilon$$
(2-12)

式中 k 为迭代次数。

如图 2-5 所示为二维矩形区域内部温度分布。

2.1.6 小结

进行热传导稳态分析时,假设材料的比热和密度不发生变化,则材料的比热和密度可以忽略。 材料热导率随温度发生变化,对于半导体材料尤为明显,在进行此类分析时,需要考虑 温度对热导率的影响。

材料热导率也受纯度的影响,以热传导为主要传热路径时,需要考虑材料纯度对热导率 的影响。

借助于热阻的概念便于进行电子设备的散热性能分析,但实际情况中热量传递在三个方向同时进行,所以热阻公式分子项中的温度差比较难确定。如果采用某些点的温度来计算温差, 由此得到的热阻往往存在误差。

稳态热传导数值求解分为建立热传导微分方程、离散微分方程和迭代求解。其理念与 FloTHERM 在进行仿真分析时的步骤:建模、划分网格、求解和后处理是一致的。

2.2 对流换热

依靠着流体的运动,把热量由一处传递至另一处的现象称为热对流。热对流、热传导和 热辐射是三种基本传热方式。若热对流过程中单位时间通过单位面积有质量 *M* 的流体由温度 *t*₁的地方流至 *t*₂处,其比热容为 *c*_n,则此热对流传递的热流密度为:

$$q = mc_{p}(t_{2} - t_{1}) \,\mathrm{W/m^{2}}$$
(2-13)

但是传热工程上涉及的问题往往不是单纯的热对流,而是流体与固体表面直接接触时的 换热过程,传热学把它称为"对流换热"。由于温度差的存在,热对流现象发生的同时也伴随 着热传导。所以,对流换热过程的换热机理既有热对流的作用,亦有热传导的作用。对流换热 与热对流不同,它已不再是基本传热方式。当具有粘性且能润湿物体表面的流体流过物体表面 时,粘滞力将制动流体的运动,使靠近物体表面的流体速度降低。在距离物体表面非常近的一 段距离之内,速度的变化非常剧烈。如图 2-6 所示,这样的流体薄层称为边界层。

2.2.1 对流换热的起因与状态

驱使流体以某一速度在物体表面周围流动的原因有两种:一种是流体因各部分温度不同 而引起的密度差异所产生的流动,此流动称为自然对流;另一种是由于风扇等旋转机械工作所

产生的流动,称为强迫对流。一般而言,流体强迫对流时的流速要高于自然对流,相应的对流 换热能力也更强。所以,对流换热问题可以分为强迫对流和自然对流。

无论流体流动的起因如何,流体在物体表面周围的流动又有层流和湍流两种流态。湍流时,对流换热作用得到强化,所以换热效果更好。因此,在分析计算对流换热问题时必须考虑 流体的流态。

2.2.2 牛顿冷却定律

1701年牛顿提出了计算对流换热的基本公式,称为牛顿冷却定律:

$$Q = h \times A \times (t_w - t_f) \tag{2-14}$$

h: 对流换热系数 (W/(m²K)); *A*: 物体表面积 (m²); *t*_w: 物体表面温度 (℃); *t*_f: 流体 温度 (℃)。

其中 h 的大小代表了该对流换热过程的强弱,由于 h 受物体表面粗糙度、几何尺寸、形状以及流体物性、流速等诸多因素的影响,在计算表面传热系数时,一般会根据流体流动的起因、状态以及物体的形状进行分类。表 2-2 所示为常用的对流换热系数。

运休	运动起田	对流换热系数(W/m ² K)		
71114	加切尼口	范围	典型值	
空气	自然对流	3~12	5	
空气	强迫对流	10~100	50	
水	自然对流	200~1000	600	
水	强迫对流	1000~15000	8000	

表 2-2 常用流体对流换热系数

2.2.3 对流换热无量纲准则数

由于对流换热微分方程组中动量方程的高度非线性,所以从数学上求解对流换热问题难 度很大。在实物或者模型的基础上进行实验研究仍然是求解对流换热问题的主要方法。通过一 些无量纲准则数将具有相似对流换热特性的问题归为一类,在简化对流换热问题的同时,也使 通过经验公式求解对流换热问题成为可能。

Gr 格拉晓夫准则数表征了浮升力与粘滞力的相对大小。Gr 值越大,表明浮升力作用越大。

$$Gr = \frac{g\Delta t\alpha l^3}{v^2}$$
(2-15)

g: 重力加速度 (m/s²); Δt: 流体与物体壁面温度差 (\mathbb{C}); α : 流体容积膨胀系数 (1/K); l: 物体几何定型尺寸 (m); v: 流体运动粘度 (m²/s)。

Pr 普朗特准则数表征了流体的动量传递能力与热量传递能力的相对大小。*Pr* 值越大,该流体传递动量的能力越大。其高度概括了所有流体的属性和分类。

$$Pr = \frac{v}{a} \tag{2-16}$$

v: 流体运动粘度 (m²/s); a: 流体热扩散率 (m²/s)。

Re 雷诺准则数表征了流体流动时惯性力与粘滞力的相对大小。*Re* 值越大,说明惯性力作用越大,由此,*Re* 的大小能反映流体的流态。对于流体外掠平板而言,当*Re* 数超过5×10⁵时,流体流态为湍流。

$$Re = \frac{ul}{v} \tag{2-17}$$

u: 流体流速 (m/s); l: 物体几何定型尺寸 (m); v: 流体运动粘度 (m²/s)。

Nu 努谢尔准则数表征了物体表面法向无量纲过余温度梯度的大小。*Nu* 值越大,说明对流换热程度越强。

$$Nu = \frac{hl}{\lambda} \tag{2-18}$$

h: 对流换热系数 (W/(m²K)); l: 物体几何定型尺寸 (m); λ: 流体热导率 (W/(mK))。 在准则关系式中, Nu 是一个待定量,它包含了待求的表面对流换热系数,故通常把 Nu 称为待定准则数。其他准则中的量都是已知量,故 Gr、Pr 和 Re 又统称为已定准则数。已定 准则数用以确定对流换热问题,在已定准则数确定之后,待定准则数也随之被确定。

对于稳态无相变强迫对流换热,其努谢尔准则数是 Gr、Pr 和 Re 准则数的函数:

$$Nu = f(Re, Pr, Gr)$$

若自然对流的影响可以忽略,则可以从上式中去除 Gr项,努谢尔准则关系式如下: Nu = f(Re, Pr)

对于空气而言, *Pr* 可视为常数, 故空气强迫对流换热的努谢尔准则关系式如下: *Nu* = f(*Re*)

对于自然对流换热,则可以从关系式中去除 Re 项,努谢尔准则关系式如下:

$$Nu = f(Pr, Gr)$$

努谢尔准则数关系中的常系数由实验确定,它表征了同一类换热现象的规律,从而可适 用于该同类换热问题的分析与计算。

2.2.4 外掠平板强迫对流换热实例

20℃空气在常压下以 10m/s、12m/s、15m/s 和 20m/s 的速度外掠 1m 长、0.1m 宽的平板, 平板温度为 40℃。

理论经验公式计算: 空气定性温度采用空气和平板的算术平均温度 30℃。30℃空气的热导率为 0.0267W/(mK),运动粘度为1.6×10⁻⁵ m²/s,密度为 1.165kg/m³,普朗特数为 0.701。

根据式(2-17)计算空气流速为10m/s的雷诺数:

$$Re = \frac{ul}{v} = \frac{10 \times 1}{1.6 \times 10^{-5}} = 6.25 \times 10^{5}$$

由于雷诺数属于湍流流动范围,采用充分发展外掠平板湍流努谢尔数计算公式:

 $Nu = 0.037 \times Re^{0.8} \times Pr^{0.33} = 0.037 \times (6.25 \times 10^5)^{0.8} \times 0.701^{0.33} = 1423.9$

根据公式计算对流换热系数:

$$h = \frac{Nu \times \lambda}{l} = \frac{1423.9 \times 0.0267}{1} = 38.02 \text{ W/(m2K)}$$

同理, 空气在 12m/s、15m/s 和 20m/s 流速下的对流换热系数分别为 43.99W/(m²K)、

52.59W/(m²K)和 66.19W/(m²K)。

软件仿真结果:在 FloTHERM 中采用 Cuboid 建立平板模型,材料属性赋予铜,并且热属 性赋予 40℃恒定温度。采用 Fixed Flow 智能元件作为空气流动源。如图 2-7 所示,设置 Model Setup 页,其中 Turbulence Model 采用 LVEL K-Epsilon 模型。

Model Setup Model Solv	er Control		
Type of Solution	Flow And Heat Transfer	•	
Dimensionality 3-Dimensional			
Radiation Radiation Off			
Joule Heating	Joule Heating Off	•	
Solar Radiation	On Click To Edit		
Transient Solution	On Click To Edit		
Fluid	Air at 30 DegC, 1 atmosphere 💌	Edit	
Gravity	Normal	•	
Direction	-Y	•	
Value	Automatic	•	
Turbulence	Turbulent	•	
Turbulence Model	Turbulence Model LVEL K-Epsilon		
	KE Model Stratification		
Pressure	1 At	m 🔻	
Default Radiant Temperature	35	c 🔻	
Radiant Transient	No Attachment	Edit	
Default Ambient Temperature	35	c 🔻	
Ambient Transient	No Attachment	Edit	
Capture Index			
Stored Variables	Calculate		
	mass riuxes		
(initiation and a second		

图 2-7 Model Setup 页

空气在 10m/s、12m/s、15m/s 和 20m/s 流速下的对流换热系数分别为 37.37W/(m²K)、 43.43W/(m²K)、 52.07W/(m²K)和 65.89W/(m²K)。

计算结果对比:表 2-3 所示为外掠平板强迫对流换热实例采用经验公式和软件仿真计算的结果,两者之间的对流换热系数差异在 2%之内。

	10m/s	12m/s	15m/s	20m/s
对流换热系数(经验公式)	38.02	43.99	52.59	66.19
对流换热系数(仿真软件)	37.37	43.43	52.07	65.89

表 2-3 外掠平板仿真与经验公式结果对比

2.2.5 小结

对流换热过程包含了热传导和热对流两种基本的传热方式。

各种对流换热过程可以通过无量纲的准则数进行计算。无论采用经验公式还是仿真软件, 计算对流换热量时都需要先确定流体的流态。

2.3 热辐射

热辐射是物体由于自身温度或热运动而辐射电磁波的现象,是一种物体通过电磁辐射的 形式把热能向外散发的传热方式。电磁波的波长范围可以从几万分之一微米到数千米,它们的 名称和分类如图 2-8 所示。

通常把波长 0.1~100μm 范围的电磁波称为热射线,其中包括了可见光、部分紫外线和 红外线。工程上所遇到的温度范围一般在 2000K 以下,热辐射的大部分能量位于红外线区段 的 0.76~20μm。太阳辐射的主要能量集中在 0.2~2μm 的波长范围,其中可见光区段占有很 大比重。

热辐射具有以下3个特点:

(1) 热辐射不依赖物体的接触而进行热量传递。并且热辐射是以电磁波的方式传输,所 以热量的传递也不需要任何空间媒介,可以在真空中进行。

(2)辐射换热过程伴随着能量形式的二次转化,即物体的部分内能转化为电磁波能发射 出去,当此电磁波投射至另一物体表面而被吸收时,电磁波能又转化为内能。

(3)一切物体只要其温度 T>0K,都会不断地发射热射线。当物体间有温差时,高温物体辐射给低温物体的能量大于低温物体辐射给高温物体的能量,因此总的结果是高温物体把能量传递给低温物体。

2.3.1 热辐射的相关概念

当热射线投射到物体上时,其中部分被物体吸收,部分被反射,其余则透过物体。假设投射到物体上全波长范围的总能量为G,被吸收 G_a 、反射 G_ρ 、透射 G_r ,根据能量守恒定律可得: $G=G_a+G_p+G_r$ (2-19)

若等式两端同除以G,可得:

$$\alpha + \rho + \tau = 1 \tag{2-20}$$

式中: $\alpha = \frac{G_{\alpha}}{G}$,称为物体的吸收率,它表示物体吸收的能量占投射至物体总能量的百分比; $\rho = \frac{G_{\rho}}{G}$,称为物体的反射率,它表示物体反射的能量占投射至物体总能量的百分比; $\tau = \frac{G_{\tau}}{G}$,称为物体的透射率,它表示物体透射的能量占投射至物体总能量的百分比。

对于固体或液体而言,热射线进入表面后,在一个极短的距离内就被完全吸收,所以认 为热射线不能穿透固体和液体。对于固体和液体,可得:

$$\alpha + \rho = 1 \tag{2-21}$$

如图 2-9 所示,热射线投射到物体表面之后会有镜面反射和漫反射之分。对于镜面反射,反射角等于入射角。高度磨光的金属表面是镜面反射的实例。对于漫反射,反射能均匀分布在各个方向。

图 2-9 镜面反射(左)与漫反射(右)

对于气体而言,热射线可被吸收和穿透,即没有反射,故可得:

 $\alpha + \tau = 1$

(2-22)

如果物体能全部吸收外来热射线,即 α =1,则这种物体被定义为黑体。如果物体能全部 反射外来热射线,即 ρ =1,则无论是镜面反射还是漫反射,统称为白体。外来热射线能全部 透过物体,即 τ =1,则称为透明体。

现实生活中并不存在黑体、白体与透明体。它们只是热辐射的理想模型。这里的黑体、 白体、透明体都是对于全波长射线而言。在一般温度条件下,由于可见光在全波长射线中只占 一小部分,所以物体对于外来热射线吸收能力的高低不能凭物体的颜色来判断,白颜色的物体 不一定是白体。

物体表面在一定温度下,会朝表面上方半球空间的各个不同方向发射包括各种不同波长的辐射能。单位时间内,物体的每单位面积向半球空间所发射全波长的总能量称为辐射力,用符号 *E* 表示,单位为 W/m²。

2.3.2 热辐射基本定律

(1) 普朗克定律。

1900 年普朗克从量子理论出发,揭示了黑体辐射光谱的变化规律。或者说给出了黑体单

色辐射力 $E_{b\lambda}$ 和波长 λ ,热力学温度T之间的函数关系。普朗克定律的黑体光谱分布如图 2-10 所示。

(2) 斯蒂芬一玻尔兹曼定律。

在辐射换热计算中,确定黑体在某个温度下全波长范围内的辐射力 Eb 至关重要。

$$E_b = \sigma_b T^4 \tag{2-23}$$

式中, $\sigma_b = 5.67 \times 10^{-8} \text{ W/(m^2K^4)}$, 称为黑体辐射系数。

(3) 兰贝特余弦定律。

黑体表面具有漫辐射的性质,且在半球空间各个方向上的辐射强度相等。物体发射的辐射强度与方向无关的性质叫漫辐射。反射的辐射强度与方向无关的性质叫漫反射。既是漫辐射 又是漫反射的表面统称漫表面。

(4) 基尔霍夫定律。

实际物体的辐射力不同于黑体。它的单色辐射力 *E*_λ 随波长和温度的变化是不规则的,如 图 2-11 所示。我们把实际物体的辐射力与同温度下黑体的辐射力之比称为该物体的发射率 ε, 也称黑度。

如果已知某物体的表面发射率 ε,则该物体的辐射力可以用下式计算:

$$E = \varepsilon E_b = \varepsilon \sigma_b T^4 \tag{2-24}$$

灰体是指物体单色辐射力与同温度黑体单色辐射力随波长的变化曲线相似,或它的单色 发射力不随波长变化,即 $\varepsilon = \varepsilon_{\lambda} = 常数, 灰体也是理想化的物体。实际物体在红外波段范围内$ 可近似地视为灰体。

图 2-11 实际物体、黑体、灰体的辐射和吸收光谱

1859 年基尔霍夫用热力学方法揭示了物体发射辐射的能力与它吸收投射辐射的能力之间 的关系。其表明在热平衡条件下,表面单色定向发射率等于它的单色定向吸收率。

$$\varepsilon_{\lambda,\theta,T} = \alpha_{\lambda,\theta,T}$$
 (2-25)
如果表面是漫射灰表面,即辐射性质不仅与方向无关,而且与波长无关,即:
 $\varepsilon(T) = \alpha(T)$ (2-26)

在工程辐射换热计算中,把物体表面当作漫射灰表面,即可以应用 $\varepsilon = \alpha$ 的关系。

2.3.3 红外辐射换热计算

两黑体表面间辐射换热,有任意放置的两非凹黑表面 *A*₁、*A*₂,它们的温度各为 *T*₁、*T*₂。 角系数表示某个表面发射出去的辐射能中直接落到另一个表面上的百分数。例如角系数 *X*_{1,2} 表示 *A*₁表面辐射的能量中落到 *A*₂上的百分数。角系数仅表示投射辐射能中到达另一个表面的 百分数,而与另一表面的吸收能力无关。

两任意放置黑体表面间的辐射换热计算式如下:

$$\phi_{12} = (E_{b1} - E_{b2})X_{12}A_1 = (E_{b2} - E_{b1})X_{21}A_2$$
(2-27)

 ϕ_{12} :表面 A_1 和表面 A_2 之间的换热量; E_{b1} :表面 A_1 的辐射力; E_{b2} :表面 A_2 的辐射力; X_{12} :表面 A_1 对表面 A_2 的平均角系数; X_{21} :表面 A_2 对表面 A_1 的平均角系数; A_1 : A_1 表面的表面积; A_2 : A_2 表面的表面积。

根据斯蒂芬一玻尔兹曼定律,两黑体表面间的辐射换热量可通过下式计算:

$$\phi_{12} = (T_1^4 - T_2^4)\sigma_b X_{12}A_1 \tag{2-28}$$

两灰体表面间的辐射换热要比黑体复杂,这是因为灰体表面只吸收一部分透射辐射,其 余则反射出去,这样就会在灰体表面间形成多次吸收、反射的现象。

对灰体表面间的辐射换热计算,通常引用有效辐射的概念来使计算简化。

$$J_1 = \varepsilon_1 E_{b1} + \rho_1 G_1 = \varepsilon_1 E_{b1} + (1 - \alpha_1) G_1 \quad (W/m^2)$$
(2-29)

从表面的角度看,其辐射换热量应是该表面的有效辐射(如图 2-12 所示)与投射辐射 之差。

$$\frac{\phi_1}{A_1} = J_1 - G_1 = \varepsilon_1 E_{b1} - \alpha_1 G_1 \quad (W/m^2)$$
(2-30)

图 2-12 有效辐射

通过以上两式消去 G_1 , 对于漫灰表面, 由于 $\varepsilon_1 = \alpha_1$, 因此可得:

$$\phi_1 = \frac{\varepsilon_1}{1 - \varepsilon_1} A_1 (E_{b1} - J_1)$$
(2-31)

如果参与辐射计算的灰体表面比较多,计算过程会比较复杂。

2.3.4 太阳辐射

太阳是一个超高温气团,其中心进行着剧烈的热核反应,温度高达数千万度。由于高温的缘故,它向宇宙空间辐射的能量中有 99%集中在 0.2µm ≤ λ ≤ 3µm 的短波区。从大气层外缘 测得的太阳单色辐射力表明它和温度为 5762K 的黑体辐射相当。大气层外缘和地面上太阳辐射光谱如图 2-13 所示。

图 2-13 大气层外缘和地面上太阳辐射光谱

当地球位于和太阳的平均距离上,在大气层外缘并与太阳射线相垂直的单位表面所接收 到的太阳辐射能为 1353W/m²,称为太阳常数 S_c,如图 2-14 所示。

图 2-14 大气层外缘太阳常数

由于大气中存在 H₂O、CO₂、O₃、尘埃等,对太阳射线有吸收、散射和反射作用。实际到 达地面在与太阳射线垂直的单位面积上的辐射能将小于太阳常数。

投射到地面的太阳辐射可分为直接辐射和天空散射,在天空晴朗时两者之和称为太阳总辐射密度,或称太阳总辐照度 W/m²。

由于太阳辐射能主要集中在0.2μm ≤ λ ≤ 3μm 的波长范围内, 而实际物体对短波的单色吸 收率和对长波的单色吸收率有时会有很大的差别。所以, 一般会将太阳辐射与红外辐射换热区 别对待。

通信行业中一些放置于户外的设备温度会受到太阳辐射的影响。在这些设备的设计过程 中需要考虑太阳辐射的影响,通过一些隔热层、遮掩外壳的设计,尽可能降低太阳辐射对设备 内部温度的影响。

2.3.5 FloTHERM 中的红外辐射计算

1. 红外辐射计算步骤

FloTHERM 中红外辐射的计算可以遵循以下 3 个步骤:

(1) 如图 2-15 所示,在软件主界面中选择 Model Setup 特性页,在 Radiation 选项中选择 Radiation On。

图 2-15 Radiation 选项

辐射物体之间的角系数计算取决于物体表面发射的射线数目。采用 Radiation On-High Accuracy 选项会比 Radiation On 选项得到更高的角系数精度。通常 Radiation On-High Accuracy 的角系数精度可以达到 1%以内, Radiation On 的角系数精度可以达到 5%以内。但是 Radiation On-High Accuracy 选项计算角系数所耗费的时间是 Radiation On 选项的 4 倍。

(2)为需要考虑辐射的物体设置辐射特性。如果 Collapsed Cuboid 需要进行红外辐射计算,则需要在软件主界面的 Solver Control 特性中勾选 Active Plate Conduction。如图 2-16 所示, 在软件主界面的项目特性与数据库中右击 Radiation 图标创建红外辐射特性。

Project	Library	y			0	ିଶ୍ୱ	1
- 🛞 An	nbient						
🗄 🎯 Flu	lid						
🕀 🕀 Gr	id Constr	aint					
🕀 🔞 M	aterial						
🖯 🕕 Ra	diation						
	Radiatio						
🛛 🛞 Re	sistance						
🛛 💽 So	urce						
🗄 🔘 Su	rface						
🛛 💼 Su	rface Exc	hange					
🖃 🔀 Th	rface Exc ermal	hange					
B Contraction (Contraction) (rface Exc ermal ansient	hange					
⊡ 🗐 Su ⊞ 🚯 Th (§ Tra	rface Exc ermal ansient	hange				_	
⊕ 🕲 Su ⊕ 🍪 Th (§) Tra Attribut	rface Exc ermal ansient e Data	Notes		**			1
→ 📾 Su ⊕ 🚷 Th - 🔇 Tra Attribut	ermal ansient e Data	hange Notes Name	Radiation				1
Attribut	rface Exc ermal ansient e Data	hange Notes Name Surface	Radiation Sub-dividea	l Radiatir	٤		1
Attribut	rface Exc ermal ansient e Data ed Surfac	hange Notes Name Surface e Tolerance	Radiation Sub-divideo 1000	l Radiatir	۲ <u>۶</u>		

图 2-16 红外辐射特性

如果 Surface 选项中选择 Single Radiating,则软件会将物体表面作为一个整体进行辐射换 热计算;如果选择 Sub-divided radiating,则软件会将物体表面分割为若干个小的表面,这些小 的表面分别参与辐射换热计算。

Subdivided Surface Tolerance 设置只有在 Sub-divided Radiating 被选择的情况下才有效。此 设置项用以控制分割后的表面边长。如果此参数值小于物体表面网格的边长,则分割表面和物 体表面网格大小一样;如果此参数值大于物体表面网格的边长,如图 2-17 所示,软件会自动 将分割表面的边界缩放至邻近的网格边界。

图 2-17 Subdivided Surface Tolerance 设置下的辐射表面

Minimum Area Considered 控制了参与辐射换热的最小辐射表面,小于此值的辐射表面被视为非辐射表面。

(3) 如图 2-18 所示,在软件主界面的项目特性与数据库中右击 Surface 图标创建表面特

性,	为需要考虑辐射换热的物体表面设置表面发射率	(Emissivity)。

Project	Library			0	-	B
An 🖉	nbient					
H Gr	id Constrai					
H M	aterial	ni.				
E B Ra	diation					***
Re:	sistance					
🛛 📀 So	urce					
🖻 🔘 Su	rface					
	Polished C	opper				
	FR4					
	Kadiation					
Attribute	e Data 🛛 N	otes				0
	Name	Radiation				
	Roughness	0	mm			•
Rs	surf-fluid	0	K m^2/W			•
Rs	surf-solid	0	K m^2/W			•
I	Smissivity	0.95				

图 2-18 表面发射率设置

2. 红外辐射计算背景原理

假设 ε_x 为 X 表面的发射率, F_{xy} 为 X 表面对 Y 表面的角系数,即 X 表面辐射的能量中落 到 Y 表面的百分数。如图 2-19 所示,表面 1 发出的辐射热量中直接被表面 3 吸收的热量百分 比为 $\varepsilon_3 F_{13}$,表面 1 发出的辐射热量中被表面 2 反射的热量百分比为 $(1 - \varepsilon_2)F_{12}$,这部分反射的 热量中又有一部分被表面 3 所吸收,其占表面 1 发出总辐射热量的百分比为 $\varepsilon_3 F_{23}F_{12}(1 - \varepsilon_2)$ 。

图 2-19 表面之间辐射换热

实际情况中表面 1 发出的辐射热量被表面 3 吸收的情况更为复杂,涉及多次的反射和吸收,并且存在多种热量辐射路径。为了将辐射计算过程简化,定义一个变量 *G_{ik}*,它代表了表面 *i*发出的所有辐射热量中被表面 *k* 所吸收的百分比。对于表面 1 发出的所有辐射热量中被表面 3 所吸收的百分比 *G*₁₃为:

 $G_{13} = \varepsilon_3 F_{13} + F_{11}(1 - \varepsilon_1)G_{13} + F_{12}(1 - \varepsilon_2)G_{23} + F_{13}(1 - \varepsilon_3)G_{33}$ (2-32)

 F_{12} :表面 1 发出的所有辐射热量被表面 2 直接吸收的百分比; $F_{12}(1-\varepsilon_2)$:表面 1 发出的所有辐射热量被表面 2 反射的百分比; $F_{12}(1-\varepsilon_2)G_{23}$:表面 3 通过表面 2 间接吸收到表面 1 发出所有辐射热量的百分比。

假设一个系统有 N 个表面参与辐射换热,则变量 G_{ik}的公式可以改写为:

$$G_{ik} = \varepsilon_k F_{ik} + \sum_{j=1}^{N} F_{ij} G_{jk} (1 - \varepsilon_j)$$
(2-33)

在所有的角系数 *F_{ik}*软件计算得到之后,变量 *G_{ik}*可以通过求解 *N*个线性方程组求得。 由此,表面 *k* 通过辐射换热吸收到的热量为:

$$Q_{k,in} = \varepsilon_k A_k \left(\sum_{j=1}^N G_{jk} \sigma T_j^4 \right)$$
(2-34)

表面 k 通过辐射换热发出的热量为:

$$Q_{k,out} = \varepsilon_k A_k \sigma T_k^4 \sum_{j=1}^N G_{jk}$$
(2-35)

所以,表面 k 净辐射换热量为:

$$Q_{k} = \varepsilon_{k} A_{k} \sum_{j=1}^{N} G_{jk} \sigma(T_{j}^{4} - T_{k}^{4})$$
(2-36)

其中 *T_j*和 *T_k*是物体近表面一层网格内的温度。除非出现以下 3 种情况,否则这种简化处理方式不会影响仿真计算结果:

- 物体材料的热导率非常小,近物体表面网格的计算温度无法描述物体表面温度。
- 在物体的辐射表面上贴附了一个表面与流体的热阻。
- 一个压缩块被放置在物体辐射表面。

关于软件中红外辐射的计算原理,可以参考参考文献[4]。

3. 角系数

在计算表面之间的角系数时,软件会考虑两表面之间物体的遮挡。如图 2-20 所示,表面 *i* 和表面 *j* 之间有物体 *B* 部分遮挡。软件基于 Monte Carlo 方法计算角系数,首先在 *i* 表面释放 出一定数量的粒子,其中一部分粒子可以直接或间接到达表面 *j*,其余粒子由于物体 *B* 的遮挡 和释放角度的原因没有到达表面 *j*。由此,可以计算得到角系数 *F_{ij}*。角系数的计算精度取决于 表面释放的粒子数目。可以通过 Model Setup 页中的 Radiation On 和 Radiation On high accuracy 选项控制释放粒子的数目。

图 2-20 表面 i 和表面 j 之间的角系数

4. 物体辐射特性

辐射换热计算基于物体之间的温度差,所以软件在计算辐射换热时必须知道物体的温度。 对于 Cuboid、Prism、Tet 和 Inverted Tet 等物体,如果设置了 Fixed Temperature 的 Thermal 特性,这些物体会通过热辐射影响周围参与辐射计算的物体温度,但它们的自身温度不会发生变化。如果这些物体设置了 Fixed Flux 的 Thermal 特性,由于软件不会计算这些物体的温度,所以这些物体无法参与到辐射换热计算中。关于软件中物体参与辐射换热计算的详细内容可以参考参考文献[4]。

5. 常用表面发射率

表 2-4 所示为软件数据库中常用的表面发射率(红外)。